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ABSTRACT: In this study, we investigate the mechanochemical
activation of acyl azide for direct C−H amidation with excellent
C−N bond selectivity, fast rate, enhanced reactivity, solvent-free
condition, and broad scope. Thermally unstable acyl azide, prone to
Curtius rearrangement, was found to be controllable under
mechanochemical ball milling conditions. Investigation of the
mechanochemical process window of acyl azide led us to define
highly selective Cp*Ir(III)-catalyzed acyl azide activation to acyl
nitrene species and direct C−H amidation protocol. In addition to
the expected merits of mechanochemistry, the newly developed
high-speed ball milling method allows for carbamoyl azide utilization, which showed a limited scope under thermal solution
conditions, registering to a list of mechanochemically preferred reactions.
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■ INTRODUCTION

Organic azides are versatile organic molecules that are used in
many chemical applications. In the chemical synthesis, the
organic azide functionality enables it to be a key nitrogen
source for various N-containing compounds.1−3 Generally, the
escape of nitrogen gas caused by external energy inputs triggers
the reaction. However, the control of extremely reactive
intermediates has been an issue in the design of chemical
processes of azides.4,5 Recently, the development of various
transition-metal catalysts has enabled control of the reactivity
and selectivity of azides under mild conditions.6−8 However,
acyl azide, extremely thermally unstable, remains problematic.
For example, benzoyl azides or carbamoyl azides quickly
undergo Curtius rearrangement to isocyanate around 50 °C,
which significantly limits its process window.9−11

In recent decades, mechanochemical transformation using
ball milling has garnered attention from the synthetic
community. Because of its many advantages such as solvent-
free synthesis, enhanced rate, and unique selectivity,
mechanochemistry becomes a significant option in chemical
synthesis.12−14 Many reports have claimed that the high
efficiency of mechanochemical ball milling reactions is due to
the high temperature elevation at the collision spot.15,16 While
mechanochemical azide transformations have been reported
only with relatively stable alkyl and sulfonyl azides,17−19

Uzǎrevic ́ and co-workers reported an interesting observation
that acyl azide does not undergo Curtius rearrangement under
high-speed ball milling conditions.20,21 Thermally unstable acyl
azides are mechanochemically stable. They utilized this

attribute for the synthesis of amides from acyl azide, avoiding
isocyanate formation. However, the formation of active acyl
nitrene species from acyl azide under solvent-free mechano-
chemical conditions remains unexplored. There are limited
reports on similar transformations utilizing dioxazolones and
Rh(III) and Co(III) catalysts in mechanochemical acyl nitrene
formation and its application.22−24

Selective acyl nitrene transfer reactions of acyl azides have
been realized in solution by transition metal catalysts such as
Rh(III), Ir(III), and Ru(II).25−33 As mentioned, a low ceiling
temperature has limits to its scope. Given the unexpected
stability of acyl azide under high-speed ball milling conditions,
a mechanochemical system could provide better control and a
broader synthetic spectrum for the nitrene transfer reactions of
acyl azide than thermal reactions in solution. Here, we
developed an Ir(III)-catalyzed mechanochemical direct C−H
amidation using acyl azide. In addition to the anticipated
highly efficient and selective C−N bond formation over C−C
bond formation, direct C−H amidation of the previously
unsuccessful substrate under solution conditions was realized
(Scheme 1).
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■ RESULTS AND DISCUSSION

The stability of acyl azide under ball mill conditions was
evaluated in a high-speed vibratory ball mill, MM400 (Restch)
(Table 1). The density of the container and ball is directly
correlated to the mechanical energy, resulting in a greater
impact per collision.34,35 Thus, it is important to consider the
azide stability in the various milling jars and balls, from low-
density Teflon (2.2 g/cm3) to high-density zirconia (ZrO2, 5.7
g/cm3), stainless steel (SS, 7.9 g/cm3), and tungsten carbide

(WC, 15.6 g/cm3). The representative para-nitro-benzoyl
azide (1a) was ground in each jar and ball at the maximum
frequency of MM400, 30 Hz, for 1 h. The product distribution
was monitored by 1H NMR (Figure 1) and FT-IR spectros-
copy (Figure S1). The low-energy condition, Teflon jar, and
SS ball resulted in no acyl azide rearrangement to isocyanate
(entry 1). From the reaction in the ZrO2 jar and balls, a sign of
decomposition was detected (7%, entry 2). The small energy
elevation to SS was insignificant (5%, entry 3); the use of

Scheme 1. Solvent-Free Mechanochemical C−H Amidation

Table 1. Stability Test of Benzoyl Azides under Ball Milling Conditionsa

NMR yieldb (%)

entry jar volume (mL) ball diameter (mm) 1a 2

1 Teflon (10 mL) stainless steel (7 mm × 2) 98 0
2 ZrO2 (10 mL) ZrO2 (8 mm × 2) 92 7
3 stainless steel (10 mL) stainless steel (7 mm × 2) 91 5
4 WC (10 mL) WC (7 mm × 2) 71 21

aReaction conditions: 1a (0.8 mmol, 154 mg) milled in each container and balls; the crude mixture was collected by chloroform (2 mL × 3) and
filtered directly using Celite pads. bYield based on 1H NMR analysis of the crude reaction mixture using CH2Br2 as the internal standard.

Figure 1. 1H NMR spectra of the acyl azide stability test for Table 1.
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heavy WC resulted in significant isocyanate formation (21%,
entry 4). These results showed that azide could undergo
Curtius rearrangement by high-energy ball milling but not
abruptly like with thermal activation. For the further C−H
amidation reaction, we chose the combination of a Teflon jar
and SS balls. We would like to emphasize that acyl azides
showed a mild degradation rate under mechanochemical ball
milling conditions; it still requires very careful handling with
proper safety equipment.
The reaction conditions by Chang’s Cp*Ir(III)-catalyzed

C−H amidation in solution (Table 2, entry 1) were modified
for the following procedure.27,28 The mixture of [Cp*IrCl2]2
(5 mol %), AgNTf2 (20 mol %), NaOAc (20 mol %), t-butyl
benzamide (3a) (1.0 equiv), and azide (1a) (1.8 equiv) was
added to the Teflon jar (10 mL) with one SS ball (10 mm).
After vibratory milling at 30 Hz for 1 h, the expected C−H
amidation product (4a) was obtained in 44% yield (entry 1).
Unreacted amide and azide showed no sign of decomposition
to isocyanate. The silver salt for active cationic Cp*Ir(III)
catalyst formation was next scrutinized. The variation of anions
to SbF6

− (entry 2) and BF4
− (entry 3) showed a negative

effect, giving 27 and <5%, respectively. In many C−H
functionalization reactions, the additive acid or base plays a
crucial role.36,37 We investigated a group of acetate and organic
acids. Silver acetate (20 mol %) significantly improved the
yield (95%, entry 4). This combination also reduced the
reaction time to 10 min (97%, entry 5). However, Cu(OAc)2
(entry 6) or no acetate (entry 7) conditions resulted in
moderate yields of 82 and 64%, respectively. The milling time
extension to 60 min gave 81% (entry 8). Acidic additive,
benzoic acid, also helped the performance of Cp*Ir catalyst to
84% (entry 9). However, the variation of acidity showed the

only marginal effect (entries 10 and 11). The reduction of the
catalyst amount to 2.5 mol % still afforded 81% product (entry
12). Additionally, a lower frequency of 20 Hz gave an 86%
yield (entry 13). Finally, the Cp*Rh(III) was evaluated. The
system developed by Bolm for dioxazolone was not effective
with the acyl azide (entries 14−16).22 The effective mechanical
C−H activation by Cp*Rh(III) was proven by Bolm; the
reaction with acyl azide might be the limiting step. The
reaction progress was monitored by IR spectrometry. The
direct measurement of solid reaction mixtures confirmed a fast
decay of azides in the solid state (Figure S2). The spectra of 10
min reaction and after filtration were same, showing that no
reaction proceeded during workup or NMR measurement in
solution.
Under the optimized conditions, the substrate scope was

investigated (Scheme 2). Our investigations began with a set of
two comparative ball milling and solution conditions, with the
same catalytic amount and time to determine and analyze the
difference. The general trends of reactivity were similar,
indicating that the reaction pathway was not severely affected
by the activation method. Electronically different benzoyl
azides reacted with benzamide 3a. As expected, electron-
withdrawing azides reacted quickly in both ball milling and
solution (4a and 4b). The electron-rich azides showed
diminished yields (4c, 4d, and 4e). The electron density
effect on benzamide was tested using electron-donating
methoxy and -withdrawing nitro substitutions (4f and 4g).
While both amides gave the reduced yields compared to the
neutral benzamide, mechanochemical ball milling showed
better efficiency than solution reactions in the production of 4f
(88% over 63%) and 4g (54% over 17%). The synthetically
challenging sp3 C−H bond amidation was investigated using 8-

Table 2. Optimization of the Mechanochemical Direct C−H Amidation of Acyl Azide 1aa

ball mill conditions

entry Hz time (min) catalyst (mol %) silver salt (mol %) additive (mol %) yieldb (%)

1 30 60 [IrCp*Cl2]2 (5) AgNTf2 (20) NaOAc (20) 44
2 30 60 [IrCp*Cl2]2 (5) AgSbF6 (20) NaOAc (20) 27
3 30 60 [IrCp*Cl2]2 (5) AgBF4 (20) NaOAc (20) <5
4 30 60 [IrCp*Cl2]2 (5) AgNTf2 (20) AgOAc (20) 95
5 30 10 [IrCp*Cl2]2 (5) AgNTf2 (20) AgOAc (20) 97 (93)c

6 30 10 [IrCp*Cl2]2 (5) AgNTf2 (20) Cu(OAc)2 (20) 82
7 30 10 [IrCp*Cl2]2 (5) AgNTf2 (20) 64
8 30 60 [IrCp*Cl2]2 (5) AgNTf2 (20) 81
9 30 10 [IrCp*Cl2]2 (5) AgNTf2 (20) benzoic acid (20) 84
10 30 10 [IrCp*Cl2]2 (5) AgNTf2 (20) 4-NO2−benzoic acid (20) 81
11 30 10 [IrCp*Cl2]2 (5) AgNTf2 (20) 4-MeO−benzoic acid (20) 86
12 30 10 [IrCp*Cl2]2 (2.5) AgNTf2 (10) AgOAc (10) 81
13 20 10 [IrCp*Cl2]2 (5) AgNTf2 (20) AgOAc (20) 86
14 30 60 [RhCp*Cl2]2 (5) AgSbF6 (20) AgOAc (20) NR
15 30 60 [RhCp*Cl2]2 (5) AgBF4 (20) AgOAc (20) NR
16 30 60 [RhCp*Cl2]2 (5) AgNTf2 (20) AgOAc (20) NR

aReaction conditions: 1a (0.18 mmol, 35 mg), 2a (0.1 mmol, 18 mg), catalyst (5 mol %), silver salt (20 mol %), and additives were milled in a
mixer mill at 30 Hz. bYield based on 1H NMR analysis of the crude reaction mixture using CH2Br2 as the internal standard, NR = no reaction. cThe
isolated yield is shown in parentheses.
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methyl quinoline (5).28 Both solvent-free ball milling and
solution-based reactions exhibited low efficiency. In the case of
highly activated para-nitro-benzoyl azide (1a), a high yield was
obtained exclusively in ball milling (84%), while the solution
reaction gave 33% yield (4h). The other electronically poor 4-
chloro-benzoyl azide showed better efficiency in ball milling
than in solution (4i). However, these deviations were not
viable with electron-rich acyl azides (4j, 4k, and 4l). The
extended reaction time (99 min) for low yielding reactant
combinations (4h, 4j, and 4l) did not show a positive effect
(Table S1). The newly developed condition is applicable to
other types of azides. p-Toluenesulfonyl azide reacted with 3a

under otherwise identical conditions and produced the
corresponding tosyl amide (4m) in 70% yield, respectively.17

The reaction with diphenylphosphoryl azide (4n) gave a
moderate yield (50%).
The green metrics of the solvent-free process were evaluated

(Table S3).38 Solvent-free synthesis improved the atom
economy of 4a synthesis from 24% (solution) to 47% (ball
milling). For the case of 4h, increased synthetic efficiency by
mechanochemistry made a sharp distinction: 8% (solution)
and 38% (ball milling).
A gram-scale experiment maintained its high efficiency. A 20

mL Teflon milling jar with one stainless-steel ball of 12 mm, 20

Scheme 2. Ir-Catalyzed sp2- and sp3-C−H Amidation with Various Acyl Azidesa

aThe following conditions utilized a 10 mL Teflon milling jar with one stainless-steel ball of 10 mm diameter. b1 (0.18 mmol), 3 (0.1 mmol),
[IrCp*Cl2]2 (5 mol %, 4 mg), AgNTf2 (20 mol %, 8 mg), and AgOAc (20 mol %, 3 mg). c1 (0.18 mmol), 3 (0.1 mmol), [IrCp*Cl2]2 (5 mol %, 4
mg), AgNTf2 (20 mol %, 8 mg), and AgOAc (20 mol %, 3 mg) in 1,2-dichloroethane (1,2-DCE) (0.5 mL) for 10 min at 30 °C. d1 (0.2 mmol), 5
(0.1 mmol), [IrCp*Cl2]2 (10 mol %, 8 mg), AgNTf2 (20 mol %, 8 mg), and AgOAc (20 mol %, 3 mg). e1 (0.2 mmol), 5 (0.1 mmol), [IrCp*Cl2]2
(10 mol %, 8 mg), AgNTf2 (20 mol %, 8 mg), and AgOAc (20 mol %, 3 mg) in 1,2-DCE (0.5 mL) for 10 min at 30 °C.

Scheme 3. A Gram-Scale Mechanochemical C−H Amidation with the Acyl Azide 1a and Benzamide 3a
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min vibration, and simple recrystallization in ethyl acetate gave
71% isolation yield (Scheme 3).
Recently, M. Kim and co-workers developed an unsym-

metrical urea synthesis through Ir(III)-catalyzed C−H
amidation with carbamoyl azides.39 The method was only
compatible with disubstituted carbamoyl azides. Monosub-
stituted carbamoyl azides exhibited low reactivity. Increasing
the temperature for thermal activation was not applicable
because of the Curtius rearrangement, which led us to
investigate the mechanochemical process (Scheme 4). The
first trial with electron-neutral benzamide (3a) with phenyl
carbamoyl azide (6a) gave only 33% yield (7a), which was still
as high as that of the solution. The addition of electron density
to benzamide improved the reactivity. Monomethoxy
benzamide reacted more efficiently (63%, 7b), and the
dimethoxy substrate showed a 71% yield (7c). Notably, this
increase was not observed in the solution-based reactions,
giving no catalytic turnover. However, the mechanochemical
conditions could not overcome the steric hindrance (7d). The
deactivation by the electron-withdrawing nitro group gave the
expected low yield (11%, 7e).

The electric variation of carbamoyl azide was evaluated. The
moderately withdrawing chlorine substitution produced
unsymmetrical urea 7f with a high yield of 82%. However,
further electron deficiency lowered the production (61%, 7g).
As seen in Scheme 2, enriching the electron density on the
phenyl group had a negative effect on the catalytic performance
(7h and 7i). However, the low reactivity of aliphatic carbamoyl
azide remains unsolved in ball milling (7j). To improve the
yield, the reaction time was extended to 99 min for ball milling
and 12 h for solution reactions (Table S2). However, no
improvement was observed. The observed catalyst deactivation
might be caused by the inhibitory effect of the urea product.
The addition of product 7g (50 mol %) at the initial mixture
decreased the yield from 61 to 6%. The further investigation
for overcoming product inhibition is currently in progress.

■ CONCLUSIONS

This study showed that unstable acyl azides behaved differently
in high-speed ball milling. The high-energy impact of the balls
and container did not promote the abrupt decomposition to
isocyanate. Employing a Cp*Ir(III) catalyst, controlled

Scheme 4. Ir-Catalyzed sp2 C−H Amidation with Various Carbamoyl Azides

aConditions: 6 (0.15 mmol), 3 (0.1 mmol), [IrCp*Cl2]2 (10 mol %, 8 mg), AgNTf2 (20 mol %, 8 mg), and AgOAc (40 mol %, 7 mg) were milled
in a mixer mill at 30 Hz, using a 10 mL Teflon milling jar with one stainless-steel ball of 10 mm diameter. bConditions: 6 (0.15 mmol), 3 (0.1
mmol), [IrCp*Cl2]2 (10 mol %, 8 mg), AgNTf2 (20 mol %, 8 mg), and AgOAc (40 mol %, 7 mg) in 1,2-DCE (0.5 mL) for 10 min at 30 °C.
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activation of acyl nitrene and amidation was realized
mechanochemically. A comparative study of solution reactions
showed that the mechanochemical reaction followed similar
reactivity trends. Elimination of the solvent did not limit the
reactivity with benzoyl azide; through the ball milling method,
the unexpected reactivity increase of carbamoyl azide was
obtained. Therefore, the current approach provides a practical
and sustainable method to address the Curtius rearrangement
issue of conventional solution-based acyl azides.
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